The Shoulder Joint

Original Author: Oliver Jones
Last Updated: May 9, 2018
Revisions: 31
Print this page

The shoulder joint (glenohumeral joint) is a ball and socket joint between the scapula and the humerus. It is the major joint connecting the upper limb to the trunk.

It is one of the most mobile joints in the human body, at the cost of joint stability. In this article, we shall look at the anatomy of the shoulder joint and its important clinical correlations.


Structures of the Shoulder Joint

Articulating Surfaces

The shoulder joint is formed by the articulation of the head of the humerus with the glenoid cavity (or fossa) of the scapula. This gives rise to the alternate name for the shoulder joint – the glenohumeral joint.

Like most synovial joints, the articulating surfaces are covered with hyaline cartilage.

The head of the humerus is much larger than the glenoid fossa, giving the joint inherent instability. To reduce the disproportion in surfaces, the glenoid fossa is deepened by a fibrocartilage rim, called the glenoid labrum.

Joint Capsule and Bursae

The joint capsule is a fibrous sheath which encloses the structures of the joint.

Fig 1.0 - The articulating surfaces of the shoulder joint.

Fig 1.0 – The articulating surfaces of the shoulder joint.

It extends from the anatomical neck of the humerus to the border of the glenoid fossa. The joint capsule is lax, permitting greater mobility (particularly abduction).

The synovial membrane lines the inner surface of the joint capsule, and produces synovial fluid to reduce friction between the articular surfaces.

To reduce friction in the shoulder joint, several synovial bursae are present. A bursa is a synovial fluid filled sac, which acts as a cushion between tendons and other joint structures.

The bursae that are important clinically are:

  • Subacromial– Located inferiorly to the deltoid and acromion, and superiorly to the supraspinatus tendon and the joint capsule. It supports the deltoid and the tendon of supraspinatus. Subacromial bursitis can cause impingement syndrome.
  • Subscapular– Located between the subscapularis tendon and the scapula. It reduces wear and tear on the tendon during movement at the shoulder joint.

There are other minor bursae present between the tendons of the muscles around the joint, but this is beyond the scope of this article.

Fig 1.1 - The major bursae of the shoulder joint.

Fig 1.1 – The major bursae of the shoulder joint.

Ligaments

In the shoulder joint, the ligaments play a key role in stabilising the bony structures. The majority of the ligaments are thickenings of the joint capsule:

  • Glenohumeral ligaments (superior, middle and inferior) –  The joint capsule is formed by this group of ligaments connecting the humerus to the glenoid fossa. They are the main source of stability for the shoulder, holding it in place and preventing it from dislocating anteriorly. They act to stabilise the anterior aspect of the joint.

    Fig 1.2 - The ligaments of the shoulder joint. The transverse humeral ligament is not shown on this diagram.

    Fig 1.2 – The ligaments of the shoulder joint. The transverse humeral ligament is not shown on this diagram

  • Coracohumeral ligament– Attaches the base of the coracoid process to the greater tubercle of the humerus. It supports the superior part of the joint capsule.
  • Transverse humeral ligament– Spans the distance between the two tubercles of the humerus. It holds the tendon of the long head of the biceps in the intertubercular groove.
  • Coracoclavicular ligament – This is composed of the trapezoid and conoid ligaments and runs from the clavicle to the coracoid process of the scapula. They work alongside the acromioclavicular ligament to keep the scapula attached to the clavicle. They are very strong and carry a heavy load. Dislocation of the AC joint can rupture the ligaments

The other major ligament is the coracoacromial ligament. Unlike the others, it is not a thickening of the joint capsule. It runs between the acromion and coracoid process of the scapula, forming the coraco-acromial arch.  This structure overlies the shoulder joint, preventing superior displacement of the humeral head. Thickening of this ligament can cause an impingement syndrome.


Movements 

As a ball and socket synovial joint, there is a wide range of movement permitted:

  • Extension (upper limb backwards in sagittal plane)
    • Produced by the posterior deltoid, latissimus dorsi and teres major.
  • Flexion (upper limb forwards in sagittal plane)
    • Produced by the pectoralis major, anterior deltoid and coracobrachialis. Biceps brachii weakly assists in forward flexion.
  • Abduction (upper limb away from midline in coronal plane)
    • The first 0-15 degrees of abduction is produced by the supraspinatus. The middle fibres of the deltoid are responsible for the next 15-90 degrees. Past 90 degrees, the scapula needs to be rotated to achieve abduction – that is carried out by the trapezius and serratus anterior.
  • Adduction (upper limb towards midline in coronal plane)
    • Produced by contraction of pectoralis major, latissimus dorsi and teres major.
  • Medial Rotation (rotation towards the midline, so that the thumb is pointing medially)
    • Produced by contraction of subscapularis, pectoralis major, latissimus dorsi, teres major and anterior deltoid.
  • Lateral Rotation (rotation away from the midline, so that the thumb is pointing laterally)
    • Produced by contraction of the infraspinatus and teres minor.

Mobility and Stability

The shoulder joint is one of the most mobile in the body, at the expense of stability. Here, we shall consider the factors the permit movement, and those that contribute towards joint structure.

Factors that contribute to mobility:

  • Type of joint – It is a ball and socket joint.
  • Bony surfaces – Shallow glenoid cavity and large humeral head – there is a 1:4 disproportion in surfaces. A commonly used analogy is the golf ball and tee.
  • Laxity of the joint capsule.

Factors that contribute to stability:

  • Rotator cuff muscles –  As dynamic stabilisers, these muscles surround the shoulder joint, attaching to the tubercles of the humerus, whilst also fusing with the joint capsule. The resting tone of these muscles act to compress the humeral head into the glenoid cavity.
  • Glenoid labrum:  This is a fibrocartilaginous ridge surrounding the glenoid cavity. It deepens the cavity and creates a seal with the head of humerus, reducing the risk of dislocation.
  • Ligaments – The ligaments act to reinforce the joint capsule, and forms the coraco-acromial arch. The most important factor is the inferior glenohumeral ligament which acts like a sling.
  • Biceps tendon – Another dynamic stabiliser, it acts as a humeral head depressor, thereby contributing to stability.
Fig 1.2 - The rotator cuff muscles, which act to stabilise the shoulder joint.

Fig 1.3 – The rotator cuff muscles, which act to stabilise the shoulder joint.

Neurovasculature

The shoulder joint is supplied by the anterior and posterior circumflex humeral arteries, which are both branches of the axillary artery. Branches of the suprascapular artery, a branch of the thyrocervical trunk, also contribute.

Innervation is provided by the axillary, suprascapular and lateral pectoral nerves.

Clinical Relevance: Common Injuries

Dislocation of the Shoulder Joint

Clinically, dislocations at the shoulder are described by where the humeral head lies in relation to the infraglenoid tubercle. Anterior dislocations are the most prevalent (95%), although posterior (4%) and inferior (1%) dislocations can sometimes occur. Superior movement of the humeral head is prevented by the coraco-acromial arch.

An anterior dislocation is usually caused by excessive extension and lateral rotation of the humerus. The humeral head is forced anteriorly and inferiorly – into the weakest part of the joint capsule. Tearing of the joint capsule is associated with an increased risk of future dislocations. Hill-Sachs fractures (compression fracture of posterolateral humeral head against anteroinferior glenoid) and Bankart lesions (detachment of antero-inferior labrum) can also occur following anterior dislocation.

The axillary nerve runs in close proximity to the shoulder joint and around the surgical neck of the humerus, and so it can be damaged in the dislocation or with attempted reduction. Injury to the axillary nerve causes paralysis of the deltoid, and loss of sensation over regimental badge area. A dislocation can also stretch the radial nerve, as it is tightly bound in the radial groove

Fig 1.4 - Anterior dislocation of the shoulder joint.

Fig 1.4 – Anterior dislocation of the shoulder joint.

Rotator Cuff Tendonitis

The rotator cuff muscles have a very important role in stabilising the glenohumeral joint. They are often under heavy strain, and therefore injuries of these muscles are relatively common.

The spectrum of rotator cuff pathology comprises tendonitis, shoulder impingement and sub-acromial bursitis. Tendonitis refers to inflammation of the muscle tendons – usually due to overuse.  Over time, this causes degenerative changes in the subacromial bursa and the supraspinatus tendon, potentially causing bursitis and impingement.

The characteristic sign of supraspinatus tendonitis is the ‘painful arc’ – pain in the middle of abduction between 60-120 degrees, where the affected area comes into contact with the acromion. This sign may also suggest a partial tear of supraspinatus.

 

Edit This Article

Rate This Article

125

Average Rating:

Quiz

Question 1 / 3
Which letter in the graphic represents the coracohumeral ligament?
Report question
Report Question

Quiz

Question 2 / 3
Which of the following is not a ligament of the shoulder joint?
Report question
Report Question

Quiz

Question 3 / 3
Which of the following nerves does not provide innervation to the shoulder joint?
Report question
Report Question

Results

Load 3d model