Development of the Respiratory System

Original Author: Sam Barnes
Last Updated: October 11, 2017
Revisions: 11

The lower respiratory system consists of the trachea, bronchi, bronchioles and alveoli.

It develops relatively late in the embryo – which can cause problems when babies are born prematurely.

In this article, we will discuss the development of the respiratory tract and its clinical implications.

Initial Development

The respiratory system is derived from the primitive gut tube – the precursor to the gastrointestinal tract. The gut tube is a endodermal structure which forms when the embryo undergoes lateral folding during the early embryonic period.

At approximately week 4 of development, an outpocketing appears in the proximal part of the primitive gut tube (the foregut) – this is known as the respiratory diverticulum. 

Initially, the respiratory diverticulum is continuous with the foregut; but this is not compatible with life. This is rectified by the formation of the tracheoesophageal septum, which is a longitudinal ridge that separates the two structures from each other.

The diverticulum separates into two buds, which become the left and right primary bronchi. The primary bronchi then proliferate to give off secondary, and tertiary bronchi.

Fig 1 – Initial development of the lower respiratory tract.

Clinical Relevance: Tracheoesophageal Fistula

A tracheoesophageal fistula is a direct connections between the trachea and the oesophagus. It can arise as a complication of surgical procedures, or can be congenital.

Congenital cases occur if the tracheoesophageal septum fails to form fully, or forms abnormally – and leaves the trachea in continuity with the oesophagus. Common abnormalities include:

  • Oesophagus empties into the trachea
  • Oesophagus is blind ended proximally and arises from the carina distally

The presentation therefore varies. The infant may become cyanosed during feeding, or may vomit/cough up food. Management is usually through the surgical resection of the fistula, and the anastomosis of any discontinuous segments.

Fig 2 – Common types of tracheosophageal fistulae.

Ongoing Development

Pseudoglandular Stage: Weeks 8-16

Each bronchopulmonary segment will become a specific portion of the lung, carrying its own tertiary bronchus and branches of the bronchial and pulmonary arteries. During weeks 8-16, the ducts develop within bronchopulmonary segments. Bronchiolar buds branch off from the tertiary bronchi, and begin to proliferate.

At this stage, there is no gas exchange yet, and so the lungs are unable to oxygenate blood. However, the lungs are a metabolically active, developing tissue, which means they are able to remove large amounts of oxygen from the blood.

In order to stop the lungs from starving the body of oxygen, the ductus arteriosus shunts blood from the pulmonary artery directly to the aortic arch. This closes at birth in the vast majority of people.

Canalicular Stage: Weeks 16-26

Throughout the canalicular stage, the respiratory bronchioles develop, budding off from the terminal bronchioles formed within the pseudoglandular stage. Despite this, there is still no gas exchange membrane, and so the lungs are not yet functional. Therefore, the vast majority of babies born during this stage will not survive.

Terminal Sac Stage: Week 26 onwards

From week 26 onwards, the alveoli develop. Within these alveoli there are two types of cell; type I and type II pneumocytes. Type I cells are basic simple sqaumous epithelial cells, which make up 90% of the alveolus. The other 10% is composed of type II cells, which produce surfactant.

Surfactant is amphipathic, meaning it is able to bind to both hydrophobic and hydrophilic molecules simultaneously. In this case, surfactant binds to water and air within the alveoli. This has the effect of reducing the surface tension. As a result of the reduced surface tension, the alveoli are able to expand to greater volumes at a given pressure.

Simply put, surfactant allows us to expand our lungs with minimal effort.

Clinical Relevance: Respiratory Distress Syndrome

If a baby is born prior to the development of type II pneumocytes, they will be unable to produce surfactant. As a result, they will have difficulty expanding their lungs to take their first breath.

If a pre-term delivery is unavoidable or inevitable, the mother can be given glucocorticoids to stimulate surfactant production in the foetus.

Rate This Article

Average Rating:

Not yet rated


Question 1 / 6
The development of the respiratory system starts at week:


Question 2 / 6
The pseudoglandular stage (weeks 8-16) leads to the creation of:


Question 3 / 6
The terminal sac stage starts at week:


Question 4 / 6
Surfactant is produced by which type of cell?


Question 5 / 6
The respiratory diverticulum arises from which part of the primitive gut tube?


Question 6 / 6
Which structure shunts blood away from the developing lungs?


Load 3d model